 GULF PIPE INDUSTRIES (L.L.C)
-Where Technology of Quality are integrated

Table of Contents

1 INTRODUCTION. 2
1.1 General 2
1.2 Product Range - Pipes \& Fittings 2
1.3 Applicable International Codes and Standards 2
2 PRODUCT APPLICATIONS 3
3 PRODUCT FEATURES AND BENEFITS 3
4 PIPE CONSTRUCTION 4
4.1 General 4
4.2 Raw materials - Resins \& Glass fibers 4
5 GRP/GRE PIPES \& FITTINGS DESIGN 5
6 PHYSICAL AND MECHANICAL PROPERTIES 5
6.1 Tolerances on Dimensions. 5
6.2 Hydraulic Characteristics 5
6.3 U. V.Resistance 5
6.4 Coefficient of Thermal Expansion 5
6.5 Heat Conductivity 5
7 JOINING METHODS FOR PIPES \& FITTINGS 6
7.1 Tensile Load Resistant Joints 6
7.2 Non-tensile Resistant Joints 7
8 FLANGED JOINTS 8
8.1 General 8
8.2 Flange Drilling Standards 8
8.3 Notes on Flanges with '0-Ring Seal 8
8.4 Tightening of Flanges 8
9 PRODUCT DIMENSIQNS....PIP.ES.\&.FIT.TINGS. 10
10 QUALITY CONTROL 17
10.1 Controlling Raw Materials 17
10.2 QC during production 17
10. 3 QC of finished products 17
11 CERTIFICATIONS AND ACCREDITATIONS 18
12 HANDLING OF GRP/GRE PIPES 19
12.1 Receiving 19
12.2 Pipe Offloading 19
12. 3 Storing GPI Pipes on Site 19
13 MANHOLE LINERS AND TANK SHELLS 20
14 PRESSURE VESSELS \& TANKS FOR AG \& UG APPLICATIONS 21
14.1 Pressure vessels 21
14. 2 Above Ground Fibre Glass Tanks 21
14. 3 Under Ground Fibre Glass Tanks 22
15 CUSTOM FABRICATION 24
16 SITE SERVICES 25
17 TRADING ACTIVITIES 25

1 Introduction

1.1 General

GPI pipes for aboveground applications are Glass Reinforced Plastics (GRP/GRE) consisting of a thermosetting chemical-resistant resin and fiberglass reinforcements. The glass fiber reinforced polyester is a material belonging to the group of the composites. The composites are made up of a continuous phase (matrix of thermosetting resins) and a fibrous phase (glass fiber), responsible for the mechanical characteristics.

GRP pipes are flexible, corrosion resistant, and can be used for a wide range of applications, such as cooling water, industrial waste water and effluents, fire water lines, seawater lines, acid cleaning, and chlorination lines.

1.2 Product Range-Pipes \& Fittings

GPI pipes are manufactured using the filament winding process, according to the International Standards listed below, with nominal internal diameters ranging from 25 mm up to 2000 mm .

Available standard pressure classes are $3,6,10,12$ and 16 bar. Higher pressure classes are available upon request. Additionally, GPI pipes can be designed for use under vacuum conditions as well as for underground applications.

1.3 Applicable International Codes and Standards

ASTM D2996	Standard Specification for Filament-Wound "Fiberglass" (Glass- Fiber-Reinforced Thermosetting-Resin) Pipe.
ASTM D3262	Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer Pipe.
ASTM D3517	Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe.
ASTM D3754	Standard Specification for "Fiberglass"(Glass-Fiber-Reinforced Thermosetting-Resin) Sewer and Industrial Pressure Pipe.
AWWA C950	Fiberglass Pressure Pipe.
AWWA M45	Fiberglass Pipe Design Manual.
ASME B31.1	Power Piping.
ASME B31.3	Process Piping.
IS0 14692	Petroleum and Natural Gas Industries - Glass-reinforced plastics -piping
BS EN 1796	Plastics Piping Systems for Water Supply With or Without Pressure - Glass-Reinforced Thermosetting Plastics (GRP Based on Unsaturated Polyester Resin (UP).
BS EN 14364	Plastics Piping Systems for Drainage and Sewerage With or Without Pressure - Glass-Reinforced Thermosetting Plastics (GRP) Based on Unsaturated Polyester Resin (UP) - Specifications for Pipes, Fittings and Joints.

2 Product Applications

GPI pipe can be used in the below pressure and gravity systems -

- Sanitary sewers
- Storm water
- Potable water
- Raw water
- Irrigation
- Industrial wastes and effluents
- Seawater transmission
- Fire protection
- Cooling water
- Chilled water lines etc.

3 Product Features and Benefits

Product Feature	Benefits
Light weight compared to traditional material. $1 / 4^{\text {th }}$ the weight of ductile iron and $1 / 10^{\text {th }}$ of pre stressed concrete pipe.	- Installation is easier compared to steel or DI pipes - No need for expensive handling equipment. - Lower transportation cost
Highly corrosion resistant composite material is used for manufacture of the pipes	- Expenses for corrosion protection are completely eliminated. Eg. cathodic protection, pipe coating, wrapping etc. - Low maintenance costs. - Flow characteristics remain unchanged during the design life and. more.
Long life	- Design life is 20-30 years as standard.
Manufactured in long sections	- Fewer joints means lower assembly time and associated costs
Smooth inside surface	- Operating costs are reduced since less pumping energy is required due to low friction of the pipe surface. - Lower cleaning costs due to less slime build up
Pipe specifications comply with international standards	- Assures high quality product specifications.
Double Bell Coupling joints with elastomeric REKA gaskets	- Ease of joining, reducing installation time - Accommodates small changes in the line direction without fittings or differential settlement

4 Pipe Construction

4.1 General

The pipe is a composite laminate consisting of a corrosion resistant liner, a structural layer and an exterior resin rich layer.

TYPICAL ABOVE GROUND PIPE SECTION

TYPICAL BELOW GROUND PIPE SECTION

4.2 Raw materials - Resins \& Glass fibers

The type of resins used in the manufacturing of GPI pipes are given below. Generally, pressure and temperature requirements govern the resin system selection; therefore, maximum service temperatures can change depending on the service requirements. For more information please consult GPI Engineers.

Orthophthalic: It is normally used in the fabrication of the structural layer of the laminates, since due to its properties and excellent wettability it confers the laminate good mechanical properties.

Isophthalic: It is normally used in the fabrication of the liner (inner barrier) of the laminates, since they cover the light corrosions and moderate temperatures and they are applicable for conducting drinking water, seawater, waste water, industrial or sanitary water and for many other slightly critical services.

Vinylester: For industrial uses, with involvement of severe service conditions: Humid-hot chlorine, oxidant acids, sodium hypochlorite, concentrated organic acids, hydrochloric acid contaminated with aromatic hydrocarbons, etc., the maximum service temperature being $100^{\circ} \mathrm{C}$ depending on the chemical conditions. There exists a wide range valid for higher temperatures.

Epoxy: Epoxy resin is used to manufacture GlassReinforced Epoxy (GRE) pipes. GRE pipes are known to have excellent mechanical properties and resistance to chemical attacks including acids, neutral salts, and operate under a temperature reaching $110^{\circ} \mathrm{C}$.

Glass Fiber: The mechanical resistance of the composite will depend on the quantity, type, position and orientation of the glass fiber reinforcement, the latter being a chemically inert material and with high tensile strength (almost $18,000 \mathrm{~kg} / \mathrm{cm} 2$, higher than that of the best steels).

In the fabrication of piping and fittings of GPI GRP, three basic glass types are used:
Glass " C " It has a good inertia with respect to chemical corrosion.
Glass "E" of excellent mechanical and electrical properties.
Glass "ECR" with excellent corrosion resistance.
The typical glass reinforcements used are:
Surface veil "C": Consisting of glass fibers dispersed at random in the form of a sheet, used as reinforcement of the first corrosion-proof layer of the laminate since it allows for a high content of resin.

Synthetic veil: The same as the previous one but based on synthetic glass fibers, indicated for specific uses.
Mats of cut filaments "E": Fabricated with filaments cut in the form of a fabric with the corresponding binding agent compatible with the resin. They are used as specific reinforcement and in the Hand Lay up Process for the fabrication of fittings.

Roving fabric "E": Fabricated with roving filaments directly in the form of a fabric. They are used as specific reinforcements and in the Hand Lay up Process for the fabrication of fittings.

Direct Roving "E": In the form of continuous filaments with the same stress in all the filaments used in the Process of Filament winding, as pipe reinforcement.

5 GRP/GRE Pipes \& Fittings Design

GPI is capable of designing FRP Solid piping and fittings for Underground (U/G), Aboveground (A/G) piping systems based on various standards such as ASTM, AWWA, BS, ASME \& ISO. The design can be done using flexible coupling joint, tensile resistant joint systems or combination of both. Above ground pipe thicknesses are based on pressure and stiffness requirements. Buried pipes are designed based on of AWWA M45, Section 5.7.5. The pipe calculation generally covers live and dead load effects on the pipe in addition to the effect of internal pressure and vacuum level on the adequacy of the pipe for buckling, combined strain levels, allowable stresses ...etc.

6 Physical and Mechanical Properties

6.1 Tolerances on Dimensions

Dimension	Specification	Tolerance
Pipe inside Diameter (ID)	Equal to DN	4 mm or 1.0%.
Length	3,10 or 11.8 meters	$\pm 25 \mathrm{~mm}$
Roundness Deviation	Pipes shall be round	$+1.0 \%$
End Squareness and End Plainness	Ends shall be both square to axis of the pipe and plane	Not more than $2 \mathrm{~mm}+0.005 \times \mathrm{DN}$

6.2 Hydraulic Characteristics

Pipe wall friction factors:

- Darcy, Fanning, Weisbach f $=0.010$ to 0.018
- Hazen Williams C $=140$ to 150
- Manning
n $\quad=0.0095$ to 0.012

6.3 U.V. Resistance

GPI pipes contain a U.V. inhibitor in their structure. This layer offers sufficient protection against U.V. radiation. If needed epoxy based paints can be used.

6.4 Coefficient of Thermal Expansion

The approximate co-efficient of thermal expansion of GRP pipe is 24 to $30 \times 10^{-6} \mathrm{~mm} / \mathrm{mm} / \mathrm{Deg}$. C

6.5 Heat Conductivity

Heat conductivity value is 0.30 to $0.35 \mathrm{~W} / \mathrm{m} \mathrm{K}$

7 Joining Methods for Pipes \& Fittings

There are two types of joining systems:

1. Joints which can take axial loads due to internal pressure and bending loads.
2. Non-tensile resistant joints where axial forces should be absorbed by anchors/thrust restraints.

7.1 Tensile Load Resistant Joints

(a) Bell/Spigot Joints-Cylindrical

This rigid joint consists of a slightly conical bell end and a cylindrical spigot end. It has an adhesive bonding joint, two components cemented, relatively low working pressure and is used for small diameter pipes.

Pressure range: 8-32 bars
Diameter range: $\quad 80-400 \mathrm{~mm}$

(b) Bell / Spigot -Tapered

This rigid joint is similar to the Bell/Spigot-Cylindrical joint with one exception that it has tapered bell and spigot and its working pressure is high. Failure is most often encountered at the straight $\left(90^{\circ}\right)$ end of the socket when dealing with cylindrical joint system. This is due to the "sudden" transition from a high stiffness section (joint area) to a low stiffness section (pipe section). The use of tapered bell and spigot ensures that the joint will perform better (no failure) and less material is being used.

Pressure range: 8-50 bars
Diameter range: $\quad 80-600 \mathrm{~mm}$

(c) Rubber Seal Lock Joint

This type of joint consists of an integral socket end and a machined spigot end. The rubber ring (called 0-ring for its round shape) is positioned on the spigot end and serves as a seal. Care should be well taken on the spigot outer surface where the 0 -ring is to be installed. This area must be free of defects. The locking strip is inserted through a rectangular opening on the socket end. This joint is flexible and allows for some axial movement as well as some angular deflection.

Pressure range: 8-32 bars
Diameter range: $80-1400 \mathrm{~mm}$

(d) Laminated Joint (LJ)

This is made by use of hand lay-up laminations (Butt \& Wrap) of two plain end pipes. This joint is rigid and does not allow for any axial movement or angular deflection. A very good grinding of the spigot outer surface to reach the structure of the pipe for excellent bonding between glass structures. The lamination thickness and bond length are standard and should be respected. This joining system is available for all ranges of diameters.

(e) Flanged Joint (FJ)

This rigid joint is usually used to enable connections with steel pipes and to allow for easy assembly and dismantling of process lines. Flanged joints are mainly used inside valve chambers and pumping stations. A gasket is placed between the two flat faces of the flange to ensure proper sealing. This joint system is almost available for all ranges of diameters and can take pressure up to 50 bars.

(f) Double Bell Coupling

Short pipes are joined using double bell coupling. The sealing of the joint is achieved by the compression of two elastomeric gaskets when the joint is assembled.

7.2 Non-tensile Resistant Joints

(a) Rubber Seal Joint (RSJ)

This joint has the same configuration as the RSLJ without the need for a locking strip. Moreover, RSJ allows for a greater amount of axial movement and angular deflection than does the RSLJ.

Pressure range: 8-32 bars
Diameter range: $80-1400 \mathrm{~mm}$

(b) Mechanical Coupler

The mechanical coupler is used with plain end pipes. The sealing is maintained through the installation of two rubber rings between the coupler and the pipes. It is almost available at all pipe diameters and can take pressure up to 50 bars.

8 Flanged Joints

8.1 General

Before assembling the Flanged Joints, all safety precautions need to be taken. Ensure that all necessary tools and materials are available.
The necessary tools for the assembly of flanges are:

- \quad Ring spanner with the required bolt head size.
- Torque wrench with the required socket size.

GRP flanges are flat faced. These flanges must always be accurately aligned and not subject to any stress. On the GRP side of the flanged joint, the bolts and nuts must have washers to avoid exceeding the permitted surface pressure. As an alternative, a steel backing ring can be installed.

8.2 Flange Drilling Standards

Standard flanges are drilled to ASME B16.5 / B16.47 pattern. Other drilling standards are also available. (BSEN, API, MSS SP.)

8.3 Notes on Flanges with '0-ring Seal

- Two flanges with an 0-ring cannot be jointed to each other. In this case one of the flanges must have a flat face (non-grooved).
- The 0-ring used for sealing may be made of EPDM or natural rubber with a shore hardness of 70 ± 5.

8.4 Tightening of Flanges

ASTM D4024 standard shall be followed for the bolt torqueing sequence.
Fiberglass flanges must always be installed tension free. Therefore, flanges must be accurately aligned. Pipelines must never be pulled by means of the flange bolts. If a Fiberglass pipeline is connected to a metal line, this metal line must be anchored to prevent any movements or loads being transmitted to the Fiberglass line.

Tightening of the bolts of a flanged joint shall be executed first diagonally, and then clockwise:

- Diagonally as per the bolt torque sequence described in ASTM D4024 and shown on Figure. Bolts shall be tightened, following the bolt torque sequence, first up to 60% of the recommended value and second up to 100% of the recommended value.
- Clockwise using the recommended bolt torque. This step has to be repeated until all bolts have been assembled at the prescribed bolt torque.
- In case bolts are not properly lubricated, or when the flange joint is not sealing, it is allowed to increase the bolt torque value up to a maximum of 150% of the recommended bolt torque.
- Bolts and nuts must have washers to avoid exceeding the permitted surface stress.
- Flanges must be properly aligned and shall not be subjected to any overload to meet each other.

Figure: Bolt Torque Sequence as per ASTM D4024

Valve Support

If a GPI flange is connected to a steel flange, the support should preferably be situated at the side of the steel flange. This is also applicable for underground applications. Pipe sections should not become overloaded by the weight of the accessories, for example by soil settlement. One suggestion would be concrete supports provided with steel connections, able to carry the full load of the valve. Also bending and torque forces caused by opening and closing of valves should be absorbed. Hand operated butterfly valves can be supported or mounted in a manhole.

ABOVE GROUND PIPE SPECIFICATIONS

ABOVE GROUND PIPE

$\begin{gathered} \text { DN } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { LENGTH } \\ \text { L(mm) } \end{gathered}$	6 BAR		10 BAR		12 BAR		16 BAR	
		Thk (mm)	Wt (kg/m)						
25	3000	4.0	0.6	4.0	0.6	4.0	0.6	4.0	0.6
40	6000	4.0	1.0	4.0	1.0	4.0	1.0	4.0	1.0
50	6000	4.0	1.2	4.0	1.2	4.0	1.2	4.0	1.2
65	6000	4.0	1.5	4.0	1.5	4.0	1.5	4.0	1.5
80	6000	4.5	2.1	4.5	2.1	4.5	2.1	4.5	2.1
100	6000	4.5	2.6	4.5	2.6	4.5	2.6	4.5	2.6
125	6000	4.5	3.3	4.5	3.3	4.5	3.3	4.5	3.3
150	6000	4.5	3.9	4.5	3.9	4.5	3.9	4.5	3.9
200	6000	4.5	5.1	4.5	5.1	4.5	5.1	4.8	5.5
250	6000	4.5	6.4	4.8	6.8	5.3	7.6	5.7	8.2
300	6000	4.6	7.8	5.5	9.4	6.1	10.4	6.6	11.3
350	6000	5.2	10.3	6.2	12.3	6.9	13.8	7.5	15.0
400	6000	5.7	12.9	6.9	15.7	7.8	17.8	8.4	19.2
450	6000	6.3	16.1	7.6	19.4	8.6	22.1	9.3	23.9
500	6000	6.9	19.6	8.4	23.9	9.4	26.8	10.2	29.1
600	6000	8.0	27.2	9.8	33.4	11.0	37.6	12.0	41.1
700	6000	9.2	36.5	11.2	44.5	12.7	50.6	13.8	55.1
800	6000	10.3	46.7	12.7	57.7	14.3	65.1	15.6	71.1
900	6000	11.4	58.1	14.1	72.1	15.9	81.4	17.4	89.3
1000	6000	12.6	71.3	15.5	88.0	17.6	100.2	19.2	109.4
1200	6000	14.8	100.5	18.4	125.4	20.9	142.7	22.8	155.9
1400	6000	17.1	135.5	21.2	168.5	24.1	191.9	26.4	210.6
1600	6000	19.4	175.7	24.1	218.9	27.4	249.4	30.1	274.4
1800	6000	21.6	220.0	27.0	275.8	30.7	314.3	33.7	345.6
2000	6000	23.9	270.5	29.9	339.4	34.0	386.7	37.3	424.9

Note: Dimensions are in mm, Weight in Kg/M.
Short-Pipes can be supplied as per requirement.
Pipe length Tolerance is $+50 /-50 \mathrm{~mm}$.

UNDER GROUND PIPE SPECIFICATIONS

STIFFNESS CLASS SN. 2500

Nominal Diameter	$\begin{gathered} \text { SPIGOT OD } \\ \text { SP OD } \end{gathered}$		PRESSURE CLASS					
			PN-6		PN-10		PN - 16	
(mm)	(mm)	(max)	Thk (mm)	Wt (kg/m)	Thk (mm)	Wt (kg/m)	Thk (mm)	Wt (kg/m)
350	378	379	4.7	13.36	4.6	12.32	4.6	12.80
400	412	413	5.2	16.08	5.0	13.88	4.8	14.87
450	463	464	5.8	10.27	5.5	18.90	6.4	18.27
500	514	515	6.3	23.17	6.0	21.33	6.8	21.31
600	616	617	7.5	32.68	6.9	29.15	6.7	28.47
700	718	719	8.0	41.34	7.9	39.25	7.8	38.42
800	820	821	9.4	53.01	8.7	49.12	8.8	47.31
900	922	923	10.7	65.45	10.0	61.47	9.7	47.54
1000	1024	1025	11.8	81.32	11.1	74.72	10.7	74.00

STIFFNESS CLASS SN. 5000

Nominal Diameter	$\begin{gathered} \text { SPIGOT OD } \\ \text { SP OD } \end{gathered}$		PRESSURE CLASS					
			PN-6		PN-10		PN-16	
(mm)	(mm)	(max)	Thk (mm)	Wt (kg/m)	Thk (mm)	Wt (kg/m)	Thk (mm)	Wt (kg/m)
350	378	379	5.8	15.50	5.6	14.74	5.3	15.58
400	412	413	6.2	16.82	6.1	17.66	5.9	17.80
450	463	464	7.3	21.93	6.8	22.86	6.7	21.98
500	514	515	8.0	27.35	7.4	25.63	7.1	25.34
600	616	617	9.5	40.22	8.9	36.68	8.4	34.94
700	718	719	10.6	53.00	10.2	48.58	9.8	47.07
800	820	821	12.0	68.58	11.5	62.33	10.9	58.74
900	922	923	13.5	86.21	12.8	77.43	12.2	73.53
1000	1024	1025	15.0	103.56	14.1	93.35	13.5	92.32

STIFFNESS CLASS SN. 10000

Nominal Diameter	SPIGOT OD SP OD		PRESSURE CLASS					
			PN-6		PN - 10		PN - 16	
(mm)	(mm)	(max)	Thk (mm)	Wt (kg/m)	Thk (mm)	Wt (kg/m)	Thk (mm)	Wt (kg/m)
350	378	379	7.3	18.49	7.1	17.76	6.6	16.86
400	412	413	8.0	23.44	7.9	21.49	7.4	20.90
450	463	464	8.9	28.02	8.6	28.84	8.2	26.31
500	514	515	9.6	34.12	9.3	32.08	9.1	30.61
600	616	617	11.7	47.76	11.1	45.79	10.6	42.63
700	718	719	13.6	64.06	12.8	62.05	12.1	57.33
800	820	821	15.5	82.90	14.6	78.04	13.9	74.78
900	922	923	17.2	103.44	16.4	98.36	15.5	93.48
1000	1024	1025	18.8	125.39	18.2	120.62	17.4	114.9

FITTINGS - ELBOWS

Elbows are mitered pipe sections joined by glass laminate to take full axial Thrust. Small diameters elbow (400 mm and below) can be made by hand laminate (Sweep). The standard dimensions of mitered elbows are as per the table below($\mathrm{R}=1.5 \mathrm{xD}$). Short Radius Elbows ($\mathrm{R}=1.0 \mathrm{D}$) can also be fabricated as per the requirements.

30° MITERED ELBOW

Nominal Diameter	R	L
400	600	400
450	675	400
500	750	450
600	900	500
700	1050	550
750	1125	550
800	1200	600
900	1350	650
1000	1500	650

60° MITERED ELBOW

Nominal Diameter	R	L
400	600	500
450	675	550
500	750	600
600	900	750
700	1050	850
750	1125	925
800	1200	1000
900	1350	1100
1000	1500	1200

45° MITERED ELBOW

Nominal Diameter	R	L
400	600	450
450	675	500
500	750	525
600	900	625
700	1050	700
750	1125	750
800	1200	800
900	1350	850
1000	1500	900

90° MITERED ELBOW

Nominal Diameter	R	L
400	600	700
450	675	800
500	750	900
600	900	1100
700	1050	1300
750	1125	1400
800	1200	1500
900	1350	1650
1000	1500	1800

SWEEP ELBOWS

Elbow with flanged end, spigot end can be supplied as per requirement.

DN	R
20	75
25	75
40	120
50	150
80	160
100	150
150	225
200	300
250	375
300	450
350	525
400	600
500	750
600	900
700	1050

REDUCER

Reducers are fittings that connect two different pipe diameters. The standard reducers are made eccentric and concentric to the pipe center. The joint between pipes and Reducers is glass laminate.

TEE

Tees and pipe sections jointed by glass laminate to take full axial thrust. The standard dimensions of Tees are as per the below table.

STANDARD EQUAL \& UNEQUAL TEE DIMENSIONS

EQUAL TEE

DN1	DN1	L	H
25	25	200	100
40	40	200	100
50	50	250	125
80	80	300	150
100	100	300	150
150	150	450	225
200	200	600	300
250	250	750	375
300	300	900	450
350	350	1050	525
400	400	1200	600
450	450	1350	675
500	500	1500	750
600	600	1800	900
700	700	2100	1050
800	800	2400	1200
900	900	2700	1350
1000	1000	3000	1500

UNEQUAL TEE

DN1	DN2	L	H
50	25	200	100
80	$25<$ DN2 < 50	300	100
100	$25<$ DN2 < 80	300	150
150	$25<$ DN2 <100	400	200
200	$25<$ DN2 <150	500	250
250	$25<$ DN2 <100	600	300
	$150<$ DN2 <200	750	375
300	$25<$ DN2<100	700	350
	$150<$ DN2<250	850	425
350	$50<$ DN2<150	800	400
	$150<$ DN2<300	1000	500
400	$80<$ DN2<150	950	475
	$200<$ DN2<350	1150	500
500	$100<$ DN2<200	1200	600
	$250<$ DN2<450	1400	700
600	$150<$ DN2<300	1200	600
	$350<$ DN2<500	1400	800
700	$150<$ DN2<300	1350	650
	$350<$ DN2<600	1650	800
800	$150<$ DN2<400	1600	800
	$450<$ DN2<750	2000	1000
900	$200<$ DN2<450	1800	900
	$500<$ DN2<800	2150	1100
1000	$200<$ DN2<450	2000	1000
	$500<$ DN2<900	2400	1200

$45^{\circ} \& 60^{\circ}$ WYE (DN2 > $0.5 \times$ DN1)

Size	A	B	L
150	440	240	145
200	610	360	205
250	780	480	265
300	950	600	325
350	1120	720	385
400	1290	840	445
450	1460	960	505
500	1630	1080	565
600	1970	1320	685
700	2310	1560	805
800	2650	1800	925
900	2990	2040	1045
1000	3330	2280	1165

Size	A	B	L
150	335	218	93
200	470	290	135
250	605	363	178
300	740	435	220
350	875	508	263
400	1010	580	305
450	1145	653	348
500	1280	725	390
600	1550	870	475
700	1820	1015	560
800	2090	1160	645
900	2360	1305	730
1000	2630	1450	815

30° WYE (DN2 $<0.5 \times$ DN1)

Size	A	B	L
150	350	390	45
200	500	487	77
250	650	583	109
300	800	680	141
350	950	777	172
400	1100	783	204
450	1250	970	236
500	1400	1067	268
600	1700	1260	331
700	2000	1453	395
800	2300	1646	458
900	2600	1840	522
1000	2900	2033	585

FLANGE JOINTS

The flange is a heavy collar made up of glass laminate impregnated with resin, where the laminate is bonding to one end of the

CONICAL BELL FLANGE
DN $\leq 300 \mathrm{~mm}$

FLAT FACE FLANGE
DN $\geq 350 \mathrm{~mm}$

STANDARD FLANGE DIMENSIONS

Nominal Dia. DN	Flange Dia. FOD	Bolt Circle FCD	Hole Dia. Od	No. of Holes n	Flange Thick TF
15	89	60.5	16	4	20
20	99	70.0	16	4	20
25	115	79.4	16	4	30
40	135	98.5	16	4	30
50	160	120.6	18	4	35
65	180	139.7	18	4	35
80	200	152.4	18	4	40
100	235	190.4	18	8	40
125	255	215.9	23	8	45
150	285	241.3	23	8	45
200	350	298.5	23	8	45
250	410	361.9	27	12	55
300	485	431.8	27	12	55
350	535	476.3	30	12	55
400	600	539.8	30	16	60
450	635	577.9	33	16	65
500	700	635.0	33	20	70
600	815	749.3	36	20	75
700	930	863.6	36	28	80
750	985	914.4	36	28	85
800	1065	977.9	42	28	90
900	1170	1085.9	42	32	95
1000	1290	1200.2	42	36	100

Note: Flange dimensions are as per ASME B16.5 / B16.47
Other Flange drilling specification are available upon request.
Dimensions are in millimeters.

10 Quality Control

Before, during and after manufacturing, GPI realizes rigorous quality controls conforming to relevant standards.

10.1 Controlling Raw Materials

Resins: Each barrel is submitted to a viscosity control. Similarly, a reactivity control is also realized, for checking the gel time and the exothermic peak in determined conditions of hardening, accelerating and working conditions. At the same time, the specific gravity is also controlled.

Glass: On all glass reinforcements used, there is a control of weight per surface unit.

10.2 QC during production

Each pipe \& fitting is produced according to a specific production sheet. Each single piece is registered when manufactured with the date of manufacturing, on individual number, the fittings type, DN, PN, resin used and the name of manufacturer.

10.3 QC of finished products

Conforming to the international standards, systematic control realized on the following points:

Visual Inspection

Each fitting coming out of the production is visually controlled, based on an internal procedure from ASTM D-2563.

Weight Control, Dimensional Inspection

Each fittings weight is controlled and compared to the minimum weight resulting from calculation and depending upon this, its shape, its pressure class, the raw materials used, the type of connection... the minimum wall thickness is also controlled on each single piece, as well as dimension.

Glass content

The glass content and construction are regularly controlled by loss of ignition test for each type of manufacturing process (winding or laminating in a mould).

Geometrical Inspection

Geometrical controls are carried out on critical locations for the wall thickness. The outer diameter and length of a spigot, or the length and inner diameter of a socket, dimensional conformity of flanges and collars are also systematically controlled.

Hydro Testing

The standard pipes and fittings are subjected to hydro testing as part of quality control. The test pressures vary from 1.5 to 2 times the design rating. For site testing, the spools / pipeline are tested at 1.5 times design pressure. Hydro testing is also conducted as per the Inspection Test Plan agreed with the client depending on the site / process conditions.

Identification \& Marking

All QC data is recorded. Each fitting gets an identification number when manufactured which allows tracing them and their data. Identification marking includes information like type of resin, nominal size, maximum working pressure and temperature. All these markings, together with GPI trade mark, are incorporated under the outer layer.

11 Certifications and Accreditations

12.1 Receiving

Generally pipes will be handed over to the Contractor or his representative at the factory or at the Job site or as agreed upon in the Contractor's purchase order. In the case of an Ex-works delivery, the pipes and fittings shall be loaded on the Contractor's trucks, by the factory loading staff. If the loading staff considers the transport of items unsuitable they will advise the contractor or his representative accordingly. Inspection is thoroughly made by the factory loading staff of the goods being loaded; nevertheless, the Contractor or his representative should make their own inspection of the goods during dispatch.

The Contractor should make the following inspection at the time of the reception of the goods:

- Each item should be inspected with care upon its arrival.
- Total quantity of pipes, fittings, etc. should be carefully checked against our delivery notes.
- Any damaged or missing item must be pointed out to the dispatcher or driver and noted on the delivery note.

Materials that have been damaged during transportation should be isolated and stored separately on site, until the material is checked by our site representative and repaired or replaced. Damaged material must not be used before it is repaired.

12.2 Pipe Offloading

Offloading at the jobsite must be carried out carefully under the control and responsibility of the Contractor. Care should be taken to avoid impact with any solid object (i.e. other pipes, ground stones, truck side etc...)

Offloading by Hand

Unloading by hand with two men should be done for small diameter pipes, not exceeding 60 kg .

Mechanical Offloading

Mechanical offloading is required for pipes heavier than 60 kg . Flexible slings or straps should be used combined with a mobile crane. It is recommended to use two slings or nylon lifting straps to hold and lift the pipes. Steel cables must not be used for lifting or handling GPI pipes. GPI Pipes can also be lifted with one sling or strap balanced in the middle with the aid of a guide rope.

Caution: Hooks must not be used at the pipe ends to lift the pipes, nor should the pipe be lifted by passing a rope or sling through it.

12.3 Storing GPI Pipes on Site

Distribution along the trench

Avoid placing the pipes where they can be damaged by traffic or blasting operation. Also avoid laying the pipes on sharp rocks or objects that may damage and affect their function. Store the pipes if possible on soft level ground (e.g. sand), timber bearers or sand bags.

Caution: Pipes must not be stored on rocks.

Storing in stock piles

Care must be taken that the storage surface has the same level, firm as possible and clear of rocks or solid objects that might damage the pipes. Store the pipes in separate stock-piles according to their class and nominal diameter. Pipes are to be placed on wooden timber at a maximum spacing of 6 meters. Any extraneous materials are to be removed from the area. Wooden wedges, used in order to prevent the pipe stack from sliding, should be placed on both sides of the stack, on the timber bearer, as shown in Figure.

Figure : Pipe storage

Handling of Nested pipes

Pipes delivered in nested system (small pipes kept inside bigger pipes) should be handle with special care.
When handling nested pipes, never use only one sling or strap. Nested pipes must always be lifted using at least two straps or slings. A spreader bar will help to insure that the load is lifted at one level. Mobile lifting equipment should move slowly when handling nested pipes and all such movements should be kept to a minimum to ensure the safety of site personnel. The Contractor should ensure that the crane operator realizes that the nested pipes which is kept inside may slip out and fall during movement. All necessary precautions should be taken.

De-nesting a load is easily accomplished by inserting a forklift fork into a padded boom. Figure shows how this is accomplished. Ensure that the forklift capacity is adequate for the job . Proper padding is essential; rubber, several wraps of corrugated cardboard sheets, a PVC pipe or PE pipe slipped over the boom are all suitable options to avoid damaging the inside of the pipes.

Figure: De nesting of pipes

The Forklift operator should lift the innermost pipe above the pipe around it sufficiently so the pipes do not touch each other when the inner pipe is being pulled out.

13 Manhole liners and Tank shells

Manhole liners and tank shells are constructed from a thermosetting chemical resistant polyester resin, glass fiber reinforcements, silica sand, and additives as required.

Manhole liners are mainly used in municipal projects and serve as an inside liner for a concrete surrounding. They can be provided as either loose liners or with "cover slabs" that have either a round or a square opening. Liners are available in diameters ranging from $\emptyset 600 \mathrm{~mm}$ to $\emptyset 4000 \mathrm{~mm}$ and have an ordinary wall thickness of 7.5 to 10 mm .

Tank shells serve as storage tanks for water, fuel and other chemicals. VE resin used for liner formation is known to have a very good chemical resistance that protects the inner surface of tanks from corrosive chemicals. Silica sand is added as a filler and ribbing is a must to achieve a good stiffness value. The outer surface of tank shells is rough so as to have a better bonding to the later applied reinforcing material. Tank shells are available in diameters ranging from 01200 mm to 04000 mm and have a maximum wall thickness of 14 mm .

14 Pressure Vessels \& Tanks for Above Ground and Under Ground Applications

14.1 Pressure Vessels

FRP Pressure vessels are manufactured as per the client requirements of capacity and site / process conditions.
FRP Pressure vessels can be manufactured with Polyester, Vinyl Ester, and Epoxy resins depending on the process requirements. Tanks can be designed and manufactured in compliance with international standards like ASME Sec-X of BPV code or BS 4994. The manufactured vessels are subjected to quality control tests and hydro testing.

Salient Features of the FRP pressure vessels are:

- Corrosion Resistant
- Light in Weight
- High Impact Strength
- Superior Outlook
- Easy to handle \& Install
- Maintenance Free.

14.2 Above Ground Fiberglass Tanks

Above ground fiber glass vessels and piping are widely used by municipalities and manufacturers because of their ability to handle corrosive chemicals. For instance, waste water treatment facilities use above ground fiber glass storage tanks and piping because they safely contain and transport harsh chemicals such as sodium hypochlorite (bleach), alum and ferric chloride. In addition, above ground fiberglass corrosion resistant stacks are used to ventilate waste water treatment facilities.

Manufacturing standards for Above Ground Tanks

GPI above ground tanks can be designed and manufactured to meet the following standards, as well as other customer requirements and specifications:

- American Society of Mechanical Engineers
- British \& European Standards
- American Society for Testing and Materials

Std : ASME RTP-1
Std : BS 4994, BS EN 13121
Std: ASTM D 3299, ASTM D 4097

Applications of aboveground fiberglass tanks, piping and equipment include the storage of such diverse items as bleach, food, chemicals and brine, as well as the collection of refinery spills

GPI aboveground tanks may be ordered in single-wall or double-wall models, for a full range of seismic conditions, insulated or not, in diameters up to 4 m , and in capacities up to 50,000 gallons. When an aboveground tank is ordered with saddles, legs or a skirt, these support components are also manufactured of fiberglass.

GPI aboveground tanks can be designed and manufactured with the following options:

- vertical or horizontal models
- open, flat or dome tops
- flat-bottom, dish-bottom, cone-bottom or sloped-bottom
- leg-supported, skirt-supported or saddle-supported
- \quad single-wall or double-wall models.

Typical accessories for GPI above ground fiberglass tanks

- Manways
- Hinged manways
- Mounting brackets
- \quad Vents (gooseneck and mushroom)
- Flanged nozzles
- Ladders
- Lifting lugs
- Tie-down lugs
- Drains
- Work platforms and catwalks
- Handrails

14.3 Under Ground Fiber Glass Tanks

Fiberglass underground fuel storage tanks can be used to store gasoline, aviation fuel, gasohol (90% gasoline and 10% ethanol mixture), jet fuel, diesel fuel, potable water or waste water at ambient underground temperatures, or fuel oil at temperatures not to exceed $65^{\circ} \mathrm{C}$. American National Standard ANSI/UL 1316 are the Standard for Fiber Reinforced Plastic Underground Storage Tanks for Petroleum Products, alcohols and alcohol-gasoline mixtures. GPI produces tanks conforming to this standard.

GRP Tanks are made up of stiffened tank shell with end caps and provision for fuel intake and outlet and fuel metering devices. Tanks should be provided with pipe connections and man-ways. Tank shells are provided with ribbing to achieve a high stiffness level. The outer surface of the tank shell is rough, which ensures a very good bonding.

ABOVE GROUND VERTICAL TANK

MODEL	Nominal Capacity $($ CuM $)$	DIA (mm)	Shell Height B (mm)	Total Heigl A (mm)
AGTV 12001	1	1200	1200	1440
AGTV 12003	3	1200	2960	3200
AGTV 16005	5	1600	2790	3110
AGTV 16006	6	1600	3285	3605
AGTV 18008	8	1800	3450	3810
AGTV 200010	10	2000	3490	3890
AGTV 200012	12	2000	4120	4520
AGTV 240015	15	2400	3620	4100
AGTV 240020	20	2400	4725	5205
AGTV 300025	25	3000	3840	4440
AGTV 300030	30	3000	4550	5150
AGTV 300035	35	3000	5260	5860
AGTV 360040	40	3600	4230	4950
AGTV 360050	50	3600	5220	5940
AGTV 360060	60	3600	6200	6920
AGTV 400070	70	4000	5870	6670
AGTV 400080	80	4000	6670	7470
AGTV 400090	90	4000	7470	8270
AGTV 4000100	100	4000	8260	9060
AGTV 4000125	125	4000	10250	11050
AGTV 4000150	150	4000	12240	13040

Note : Accessories are Ladder, Platform \& Hand Rails.

MODEL	Nominal Capacity		$\begin{gathered} \text { DIA } \\ (\mathrm{mm}) \end{gathered}$	Shell Length C (mm)	Total Length L (mm)	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{~mm}) \end{gathered}$	Number of Cradles
	(USG)	(LT)						
HT 500	500	1900	1200	1340	1940	375	595	2
HT 750	750	2850	1200	2220	2820	375	1035	2
HT 1000	1000	3800	1600	1420	2220	450	660	2
HT 1500	1500	5700	1800	1720	2620	500	810	2
HT 2000	2000	7550	1800	2500	3400	500	1200	2
HT 3000	3000	11350	1800	4060	4960	500	1980	2
HT 4000	4000	15150	1800	5620	6520	500	1840	3
HT 5000	5000	18950	1800	7190	8090	500	2363	3
HT 6000	6000	22750	2400	4440	5640	600	2220	2
HT 8000	8000	30300	2400	6200	7400	600	2067	3
HT 10000	10000	37900	2400	7950	9150	600	2650	3
HT 12000	12000	45450	2400	9710	10910	600	2428	4
HT 15000	15000	56800	3000	7390	8890	700	2497	3
HT 20000	20000	75750	3000	10200	11700	700	2575	4
HT 25000	25000	94650	3000	13020	14520	700	2624	5

Note : Accessories are Ladder, Platform \& Hand Rails.

15 Gustom fabrication

GPI is able to fabricate a wide range of engineered fiberglass structural products to meet specific customer requirements. Examples of this custom fabrication are

- Contact-molded tanks
- Ductwork
- Free-standing exhaust stacks
- Air stripping towers
- Scrubbers
- Wastewater holding tanks
- Food-processing tanks
- Brine makers
- Sea water intake tower screen
- GRP Channels
- Sludge Silo
- Gravity Sludge thickneners

16 Site services

- Pipe joint laminations
- GRP lining for concrete tanks
- GRP lining for Manholes

17 Trading Activities

- Supply of HDPE Jacket pipes for Insulated pipes
- Supply of Industrial/ Process plant Chemical
- Supply of HDPE, PE, U/CPVC pipes \& filttings

Project Photos

H.O.: P.O. Box: 66575, Dubai - U.A.E., Tel.: +97142575750, Fax: +97142574950 Factory: Al Ghail Industrial Park, Ras Al Khaimah - U.A.E.

E-mail: info@gulfpipe.com, www.gulfpipe.com

